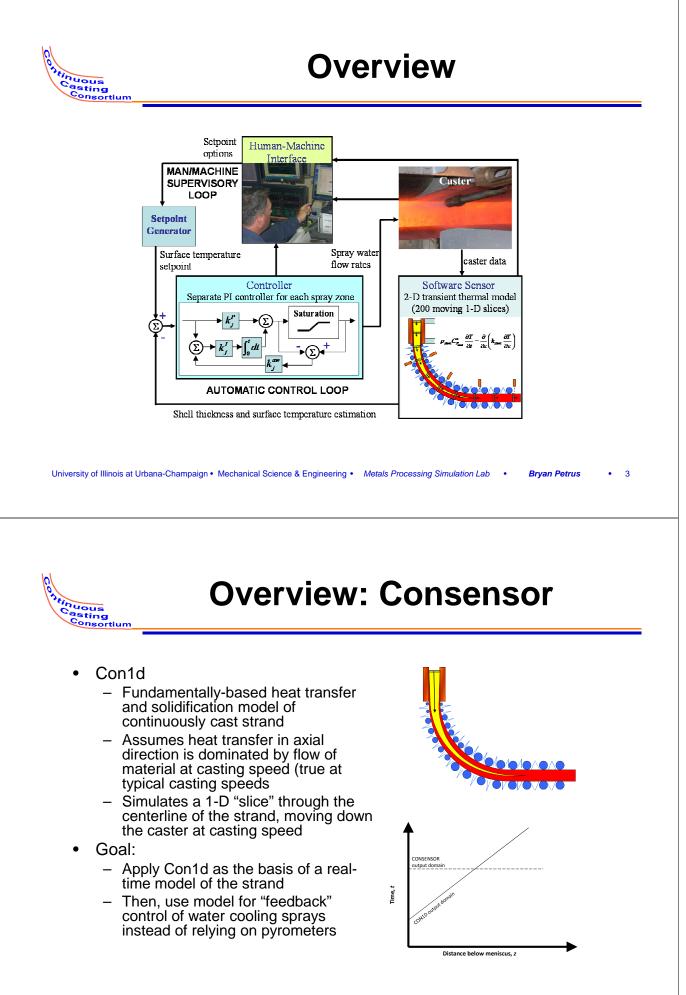


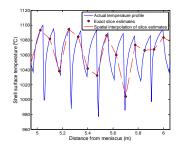
Online control of spray cooling using Cononline

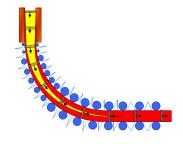
Bryan Petrus (MSME/Ph.D. Student)

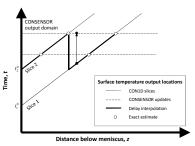


Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

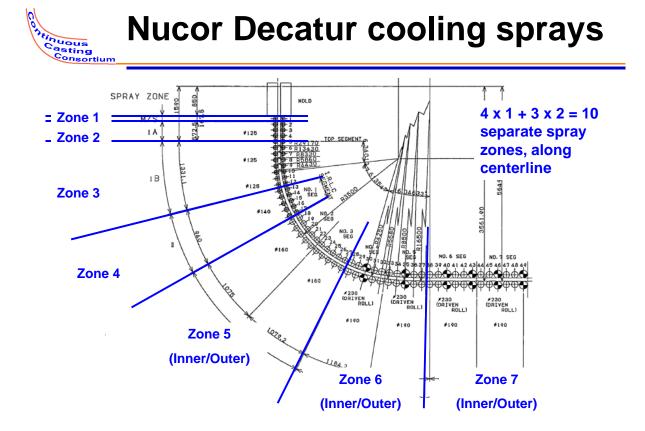
Outline


- Brief overview of Cononline project
- Challenges in dynamic control of spray cooling
 - Saturation and anti-windup
 - Setpoint choice
 - Sticker slowdowns
- Offline simulator
- Simulation example: sticker slowdown





Overview: Consensor

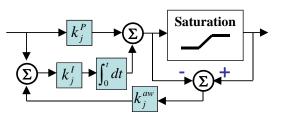

- Consensor: "Software sensor"
 Manages 200 Con1d slices
 - Each second, gets updated casting conditions from Level 2, simulates each slice for 1 second of travel at casting speed
 - Uses "delay interpolation" for points in between slices

Overview: Concontroller

- Each spray zone is controlled by a separate PI controller
- Every second, for each zone, j
 1. Calculate the average tracking error:

 $\Delta T_i = T_i^{\text{setpoint}} - T_i^{\text{predicted}}$

2. Calculate the spray-water flow rate command for the next time interval, via the classic PI control law:

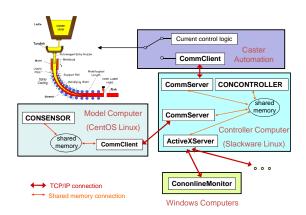

$$u_{j}(t + \Delta t) = u_{j}^{P}(t + \Delta t) + u_{j}^{I}(\Delta t)$$
$$u_{j}^{P}(t + \Delta t) = k^{I}\Delta T_{i}(t)$$

$$u_{i}^{I}(t+\Delta t) = u_{i}^{I}(t) + k_{i}^{I}\Delta T_{i}(t)\Delta t - k_{i}^{aw} \left[u_{i}^{measured}(t) - u_{i}(t) \right]$$

 Additional term on integral is antiwindup correction to prevent delays after saturation

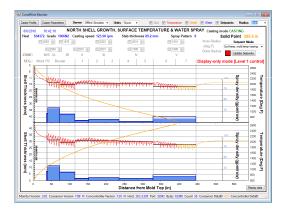
University of Illinois at Urbana-Champaign • Mechanical Science & Engineering • Metals Processing Simulation Lab

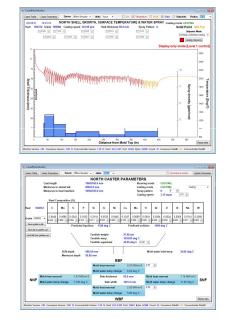
3. Send spray rates to all other programs



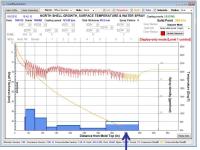
Brvan Petrus

7

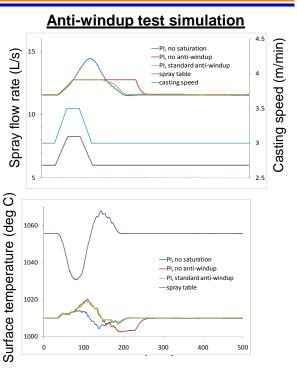

Overview: Programs


- Programs run on separate computers for stability and speed
 - Consensor runs on CentOS Linux
 - Concontroller runs on Slackware Linux
 - Communicate with each other and Level 2 via TCP/IP programs written by Rob Oldroyd (Nucor Decatur)
 - Also send information to Windows PCs via monitor programs

Overview: Monitor


11

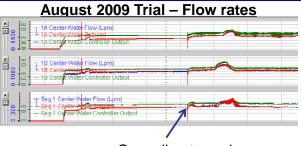
University of Illinois at Urbana-Champaign • Mechanical Science & Engineering • Metals Processing Simulation Lab • Bryan Petrus •



Anti-windup: benefits

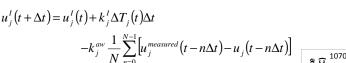
- In normal casting conditions, some valves may be fully open or closed
- After the valve can't move any further, the integral controller continues to integrate (windup) and takes a while to return to normal
- Anti-windup subtracts the difference between controller and actuator to reduce this delay

Valve fully open, not hitting setpoint

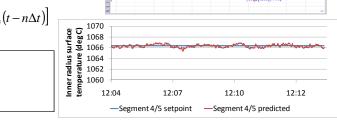

Anti-windup: problems

 However, too aggressive anti-windup was found to over-react to chattering in the spray valves

 $u_{j}^{I}(t+\Delta t) = u_{j}^{I}(t) + k_{j}^{I}\Delta T_{j}(t)\Delta t$


 $-k_{j}^{aw}\left[u_{j}^{measured}(t)-u_{j}(t)\right]$

 We responded to this by averaging the error signal before anti-windup

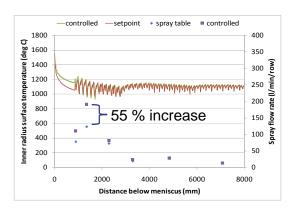


Cononline turned on

July 2010 Trial – Flow rate and surface

Flow rate legend — Measured flow rate — Concontroller suggest flow rate temperature

University of Illinois at Urbana-Champaign • Mechanical Science & Engineering • Metals Processing Simulation Lab • Bryan Petrus • 13



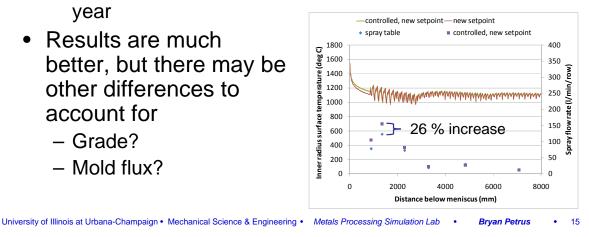
Setpoints

 Cononline setpoints are based on spray table, estimate mold heat removal based on mold flux properties

$$\overline{q} = 4.63 \times 10^6 \,\mu^{-0.09} T_m^{-1.19} v_c^{0.047} \left(1 - 0.152 \exp\left[-\left(\frac{0.107 - pc}{0.027}\right)^2 \right] \right) (*)$$

- Formerly, interpolated setpoints in top 4 zones with respect to actual mold conditions
- Nucor Decatur wants to use Cononline to fix the temperature in the bender (zones 2 and 3)
- PI control reacts to differences in mold heat removal by changing the sprays drastically in upper zones

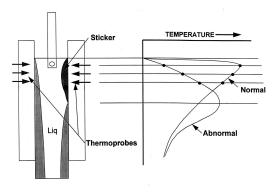
(*) C. Cicutti, M. Valdez, T. Perez, G.D. Gresia, W. Balante and J. Petroni: "Mould thermal evaluation in a slab continuous casting machine," *Proc. 85th Steelmaking Conference*, (Nashville, TN, USA), 2002, vol. 85, pp. 97-107, 282.



Setpoints

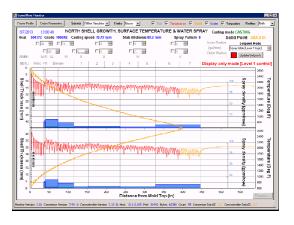
- **Regenerated setpoints**
 - instead of equation (*), used average recorded mold heat removal at Nucor Decatur over last vear
- Results are much better, but there may be other differences to account for
 - Grade?
 - Mold flux?

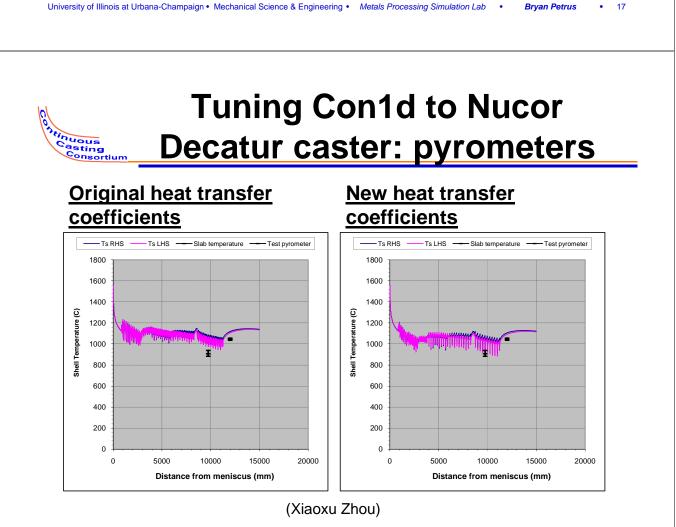
Average mold heat removal (MW/m²)

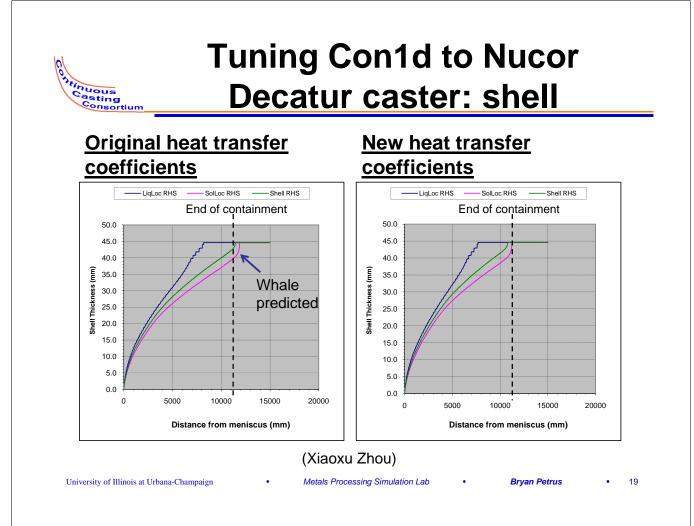

	15.7	31.5	47.2	78.7	98.4	118.1	137.8	157.5	196.8	speed (ipm)
Pattern	0.40	0.80	1.20	2.00	2.50	3.00	3.50	4.00	5.00	speed (m/min)
1		1.346	1.454	1.498	1.711	2.343	2.548			
2										
3	0.0106	1.656	1.462	1.367	1.734	2.363	2.526			
4		1.967	1.666	1.642	1.83	2.442	2.569			
5							2.69			
6			1.385	1.653	1.777	2.143	2.374			
7	6.0735	1.346	1.408	1.605	1.837	2.226	2.393			
8		1.624	1.371	1.531	1.794	2.146	2.352			

Sticker slowdowns

- Dynamic controller also may have problems dealing with unusual casting conditions, e.g. sticker slowdowns
- Sticker detection:
 - Shell surface touches mold hot face, leading to thin spot in shell
 - Nucor Decatur breakout detection alarm is triggered when mold thermocouples drop suddenly in temperature
 - Typically have more false positives than actual detections
- Caster response:
 - Immediately slowed to 20 ipm to prevent breakout
 - Sprays are taken from spray table at 80 ipm (higher spray rates than 20 ipm) to prevent bleeders


(Ed Szekeres)

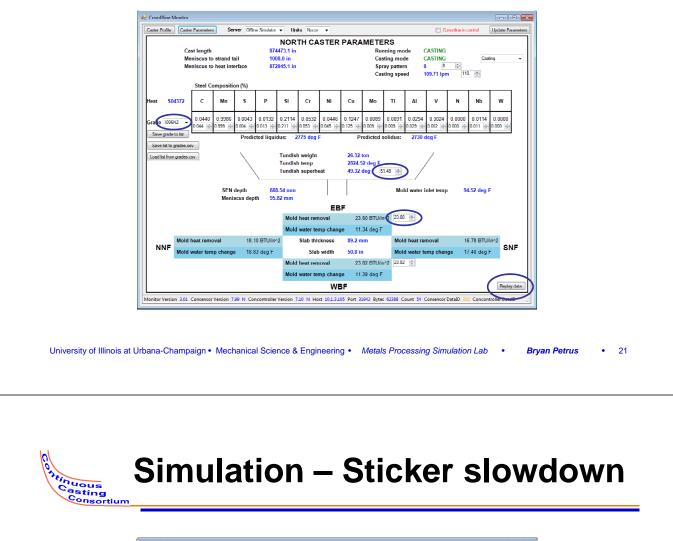



Cononline response

- Cononline is only given average heat removal rate in mold, so it does not predict the localized thin spot in the shell
- Because of sudden drop in temperature due to the slowdown, the PI controller reaction is turn all sprays down
- Added some extra logic to Concontroller to handle this:
 - In first three zones (through the bender) the controller uses the 80 ipm flow rates instead of applying temperature control

Light blue boxes: spray table at 80 ipm Dark blue outlines: spray table at 20 ipm

Offline simulator


- Implementing Cononline as an offline simulator
 - 1. "Offline" monitor allows direct user input of casting conditions
 - Database querier in Excel pulls conditions by caster, sequence, heat, slab, and/or time and date, sends to "replay" program that feeds data to Consensor
- Potential uses:
 - Testing out new casting practices prior to implementation
 - Defect or event investigation
 - Operator training

Nucor Decatur database querier

Offline simulator

aster F		Caster Pi	,			HELL (_	-	30				Water		- 2		s Both	
	S04	372 Gra	le 1006N	2 Casti		speed 1	23.98	ipm	Slab t	hickne	ss 89.2		S	oray Pat			5		Point 39		
		E 41 E 228				_		1			(A) (V)		150 🐳			Inner F (gal/m		Sorav t	Setpoint Mode Spray table [Level 1 logic]		
ZON	c.	32 M/S	2 🗐	回50 B		÷ []72	4	100]58 IV	4		1	50		Outer F	Radius		Update Set		
SEG		old FR	Bender	1	1	1 2	1	3	4	1V	5	Ĩ	6	ĩ.	7	Display	only	mode	l evel 1	1 contr	
C					- 12				2		- 8									2600	
(0)		2	-			-						-							(0	2400	
ē	10	MA	MAMA	AL AS AN A ATA	NN	mm	AMAAA	4044444	100000	144444		na.	122.10				-	100	Spray	2200 2000 1800 1600	
Ħ,		11	114 TOU	utility.		11	111	Internation		444	4.1.4	MAN	VMMW	mm	MMM	~		15		2000	
ŝ			_		_	_													density	1600	
ess	30 I Š		-				-	_				-						50		1400 ·	
în s	36								-									25	pm	1200	
3	40 H	_1		_								-	-						(gpm/row)	800	
	t	-		-		-	,		1		1		-	>			1		-	2600	
	10 H																		S	2400	
hell			MAAMA	anan	ΝŴ	www	MMM	ANTALA	000000									100	Spray	2200 2000 1800 1600	
土			til and	u AtAAA	_	10	ur	La dada	444	444	Abdab	nm	YMMY	WMM	MMM	<u> </u>		75		1800	
Shell Thickness	20 Picus		_		_	-													density	1600	
ess 1												-						50		1400	
Î	10																	25	(gpm/row)	1200	
а,	5 H			_															TOW	800	
C	, K	50		100		150	20	0	250		300	3	10	400	4	50	500	L,	550	600	
							20		Distan										(Replay da	

Thank you

- NSF grants
 - GOALI DMI 05-00453 (Online)
 - GOALI CMMI-0900138
- CCC students
 - Xiaoxu Zhou, Huan Li (former student), Sami Vapalahti, Hemanth Jasti
- Nucor Decatur
 - Level 2 programmers: Rob Oldroyd, Teri Morris, Kris Sledge, James
 - Metallurgists: Ron O'Malley, Bob Williams
 - Electrical: Steve Dunnavant, George, Bill James, Jeff White
 - Caster supervisors and operators: Scott Ridgeway, Caster Green, Rodney Thrasher, Bryan Thornton, Josh
 - Everyone else
- Continuous Casting Consortium members (ABB, Arcelor-Mittal, Baosteel, Corus, LWB Refractories, Nucor Steel, Nippon Steel, Postech, Posco, ANSYS-Fluent)

University of Illinois at Urbana-Champaign • Mechanical Science & Engineering • Metals Processing Simulation Lab • Bryan Petrus • 23